domingo, 21 de noviembre de 2010

fosforilacion oxidativa


La fosforilación oxidativa es una ruta metabólica que utiliza energía liberada por la oxidación de nutrientespara producir adenosín trifosfato (ATP). Se le llama así para distinguirla de otras rutas que producen ATP con menor rendimiento, llamadas "a nivel de sustrato". Se calcula que hasta el 90% de la energía celular en forma de ATP es producida mediante este proceso.1
Consta de dos etapas: en la primera, la energía libre generada mediante reacciones químicas redox en varioscomplejos multiproteicos conocidos en su conjunto como cadena de transporte de electrones se emplea para producir, por diversos procedimientos como bombeo, ciclos quinona/quinol o bucles redox, un gradienteelectroquímico de protones a través de una membrana asociada en un proceso llamado quimiosmosis. La cadena respiratoria está formada por tres complejos de proteínas principales (complejo I,IIIIV), y varios complejos "auxiliares", utilizando una variedad de donantes y aceptores de electrones.
La energía potencial de ese gradiente, llamada fuerza protón-motriz, se libera cuando se translocan los protones a través de un canal pasivo, la enzima ATP sintasa, y se utiliza en la adición de un grupo fosfato a una molécula de ADP para almacenar parte de esa energía potencial en los enlaces anhidro "de alta energía" de la molécula de ATP mediante un mecanismo en el que interviene la rotación de una parte de la enzima a medida que fluyen los protones a través de ella. En vertebrados, y posiblemente en todo el reino animal, se genera un ATP por cada 2,7 protones translocados. Algunos organismos tienen ATPasas con un rendimiento menor.
Aunque las diversas formas de vida utilizan una gran variedad de nutrientes, casi todas realizan la fosforilación oxidativa para producir ATP, la molécula que provee de energía al metabolismo. Esta ruta es tan ubicua debido a que es una forma altamente eficaz de liberación de energía, en comparación con los procesos alternativos defermentación, como la glucólisis anaeróbica.
Pese a que la fosforilación oxidativa es una parte vital del metabolismo, produce una pequeña proporción deespecies reactivas del oxígeno tales como superóxido y peróxido de hidrógeno, lo que lleva a la propagación de radicales libres, provocando daño celular, contribuyendo a enfermedadesy, posiblemente, al envejecimiento. Sin embargo, los radicales tienen un importante papel en la señalización celular, y posiblemente en la formación de enlaces disulfuro de las propias proteínas de la membrana interna mitocondrial. Las enzimas que llevan a cabo esta ruta metabólica son blanco de muchas drogas y productos tóxicos que inhiben su actividad.

ciclo de krebs


Ciclo de Krebs

Esquema didáctico del ciclo del ácido cítrico.
El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es unaruta metabólica, es decir, una sucesión de reacciones químicas, que forma parte de la respiración celular en todas las células aeróbicas. En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de glúcidosácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidosgrasas y proteínas frecuentemente se divide en tres etapas, de las cuales, el ciclo de Krebs supone la segunda. En la primera etapa, los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej.desaminación oxidativa), la beta oxidación de ácidos grasos y la glucólisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según lateoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.

Contenido

 [ocultar]

[editar]Historia

El ciclo Krebs recibe su nombre en honor a su descubridor Sir Hans Adolf Krebs, quien propuso los elementos clave del consumo de O2, en cantidad desproporcionada respecto a las cantidades añadidas. En segundo lugar, empleando malonato (inhibidor de la succinato deshidrogenasa), lograba bloquear la oxidación del piruvato, lo que indicaba su participación en la vía. Además, observó que las células tratadas con malonato acumulaban citrato, succinato y α-cetoglutarato, lo cual sugería que citrato y α-cetoglutarato eran precursores del succinato. En tercer lugar, la administración al tejido de piruvato y oxaloacetato provocaba la acumulación de citrato en el músculo, lo que indicaba que son precursores del citrato. Con base en estas observaciones experimentales Hans Krebs propuso una ruta cíclica y su secuencia de reacciones. Este esquema inicial, con ciertas modificaciones, dio lugar al ciclo de Krebs tal y como hoy lo conocemos.

[editar]Reacciones del ciclo de Krebs

El ciclo de Krebs tiene lugar en la matriz mitocondrial en eucariota
Ciclo de Krebs-es.svg
El acetil-CoA (Acetil Coenzima A) es el principal precursor del ciclo. El ácido cítrico (6 carbonos) o citrato se regenera en cada ciclo por condensación de un acetil-CoA (2 carbonos) con una molécula de oxaloacetato (4 carbonos). El citrato produce en cada ciclo una molécula de oxaloacetato y dos CO2, por lo que el balance neto del ciclo es:
Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 2 H2O → CoA-SH + 3 (NADH + H+) + FADH2 + GTP + 2 CO2
Los dos carbonos del Acetil-CoA son oxidados a CO2, y la energía que estaba acumulada es liberada en forma de energía química: GTP y poder reductor (electrones de alto potencial):NADH y FADH2. NADH y FADH2 son coenzimas (moléculas que se unen a enzimas) capaces de acumular la energía en forma de poder reductor para su conversión en energía química en la fosforilación oxidativa.
El FADH2 de la succinato deshidrogenasa, al no poder desprenderse de la enzima, debe oxidarse nuevamente in situ. El FADH2 cede sus dos hidrógenos a la ubiquinona (coenzima Q), que se reduce a ubiquinol (QH2) y abandona la enzima.
Las reacciones son:
MoléculaEnzimaTipo de reacciónReactivos/
Coenzimas
Productos/
Coenzima
I. Citrato1. AconitasaDeshidrataciónH2O
II. cis-Aconitato2. AconitasaHidrataciónH2O
III. Isocitrato3. Isocitrato deshidrogenasaOxidaciónNAD+NADH + H+
IV. Oxalosuccinato4. Isocitrato deshidrogenasaDescarboxilación
V. α-cetoglutarato5. α-cetoglutarato
deshidrogenasa
Descarboxilación oxidativaNAD+ +
CoA-SH
NADH + H+
CO2
VI. Succinil-CoA6. Succinil-CoA sintetasaHidrólisisGDP
Pi
GTP +
CoA-SH
VII. Succinato7. Succinato deshidrogenasaOxidaciónFADFADH2
VIII. Fumarato8. Fumarato HidratasaAdición (H2O)H2O
IX. L-Malato9. Malato deshidrogenasaOxidaciónNAD+NADH + H+
X. Oxaloacetato10. Citrato sintasaCondensación

NOTA: El cis-aconitato es un intermedio de reacción muy inestable que rápidamente se transforma en citrato, antes de comenzar la tercera reacción.

[editar]Visión simplificada y rendimiento del proceso

  • El paso final es la oxidación del ciclo de Krebs, produciendo un acetil-CoA y un CO2.
  • El acetil-CoA reacciona con una molécula de oxaloacetato (4 carbonos) para formar citrato (6 carbonos), mediante una reacción de condensación.
  • A través de una serie de reacciones, el citrato se convierte de nuevo en oxaloacetato.
  • Durante estas reacciones, se substraen 2 átomos de carbono del citrato (6C) para dar oxalacetato (4C); dichos átomos de carbono se liberan en forma de CO2
  • El ciclo consume netamente 1 acetil-CoA y produce 2 CO2. También consume 3 NAD+ y 1 FAD, produciendo 3 NADH + 3 H+ y 1 FADH2.
  • El rendimiento de un ciclo es (por cada molécula de piruvato): 1 ATP, 3 NADH +3H+, 1 FADH2, 2CO2.
  • Cada NADH, cuando se oxide en la cadena respiratoria, originará 2,5 moléculas de ATP (3 x 2,5 = 7,5), mientras que el FADH2 dará lugar a 1,5 ATP. Por tanto, 7,5 + 1,5 + 1 GTP = 10 ATP por cada acetil-CoA que ingresa en el ciclo de Krebs.
  • Cada molécula de glucosa produce (vía glucólisis) dos moléculas de piruvato, que a su vez producen dos acetil-CoA, por lo que por cada molécula de glucosa en el ciclo de Krebs se produce: 4CO2, 2 GTP, 6 NADH + 6H + , 2 FADH2; total 32 ATP.

[editar]Regulación

Muchas de las enzimas del ciclo de Krebs son reguladas por retroalimentación negativa, por unión alostérica del ATP, que es un producto de la vía y un indicador del nivel energético de la célula. Entre estas enzimas, se incluye el complejo de la piruvato deshidrogenasa que sintetiza el acetil-CoA necesario para la primera reacción del ciclo a partir de piruvato, procedente de la glucólisis o del catabolismo de aminoácidos. También las enzimas citrato sintasaisocitrato deshidrogenasa y α-cetoglutarato deshidrogenasa, que catalizan las tres primeras reacciones del ciclo de Krebs, son inhibidas por altas concentraciones de ATP. Esta regulación frena este ciclo degradativo cuando el nivel energético de la célula es bueno.
Algunas enzimas son también reguladas negativamente cuando el nivel de poder reductor de la célula es elevado. El mecanismo que se realiza es una inhibición competitiva por producto (por NADH) de las enzimas que emplean NAD+ como sustrato. Así se regulan, entre otros, los complejos piruvato deshidrogenasa y citrato sintasa.

[editar]Principales vías que convergen en el ciclo de Krebs

La mayoría de las vías catabólicas convergen en el ciclo de Krebs, como muestra el diagrama. Las reacciones que forman intermediarios del ciclo se conocen como reacciones anapleróticas.
El ciclo de Krebs constituye la segunda etapa del catabolismo de carbohidratos. La glucólisis rompe la glucosa (6 carbonos) generando dos moléculas de piruvato (3 carbonos). Eneucariotas, el piruvato se desplaza al interior de la mitocondria (gracias a un transportador específico de membrana interna). En la matriz mitocondrial, produce acetil-CoA que entra en el ciclo de Krebs.
En el catabolismo de proteínas, los enlaces peptídicos de las proteínas son degradados por acción de enzimas proteasas en el tubo digestivo liberando sus constituyentesaminoacídicos. Estos aminoácidos penetran en las células, donde pueden ser empleados para la síntesis de proteínas o ser degradados para producir energía en el ciclo de Krebs. Para su entrada al ciclo deben eliminarse sus grupos amino (terminales y laterales) por acción de enzimas aminotransferasas y desaminasas, principalmente.
En el catabolismo de lípidos, los triglicéridos son hidrolizados liberando ácidos grasos y glicerol. En el hígado, el glicerol puede ser convertido en glucosa vía dihidroxiacetona fosfato ygliceraldehído-3-fosfato, por la gluconeogénesis (ruta anabólica). En muy diversos tejidos, especialmente en músculo cardíaco, los ácidos grasos son degradados en la matriz mitocondrial mediante sucesivos ciclos de beta oxidación que liberan unidades de acetil-CoA, que pueden incorporarse al ciclo de Krebs. En ocasiones, el ciclo de Krebs puede rendirpropionil-CoA (3 carbonos), que puede emplearse para la síntesis de glucosa en la gluconeogénesis hepática.
El ciclo de Krebs siempre es seguido por la fosforilación oxidativa. Este proceso extrae la energía en forma de electrones de alto potencial de las moléculas (Cofactores reducidos) que son el NADH y FADH2, regenerando NAD+ y FAD, gracias a lo cual el ciclo de Krebs puede continuar. Los electrones son transferidos a moléculas de O2, rindiendo H2O. Pero esta transferencia se realiza a través de una cadena transportadora de electrones capaz de aprovechar la energía potencial de los electrones para bombear protones al espacio intermembrana de la mitocondria. Esto genera un gradiente electroquímico de H+, que es utilizado para la síntesis de ATP mediante la enzima ATP sintetasa. De este modo, el ciclo de Krebs no utiliza directamente O2, pero lo requiere al estar acoplado a la fosforilación oxidativa.
Por cada molécula de glucosa, la energía obtenida mediante el metabolismo oxidativo, es decir, glucólisis seguida del ciclo de Krebs, equivale a 30/32 moléculas de ATP dependiendo del tipo de lanzadera para introducir el poder reductor dentro de la mitocondria, si es la lanzadera de malato-aspartato son 32 y si es la de glicerol 3 fosfato, son 30.